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tered at quite low temperatures if it were possible
to apply a suitably oriented magnetic field of suffi-
cient magnitude to give each Ni** ion a substantial
magnetic moment. The interesting possibility of
observing long-range ordering of such induced mo-
ments depends critically on the structure of the
salt which, unfortunately, is not yet known in detail.'®
We are unable, at present, to predict whether or
not such effects should be observable. While A
appears to be large in comparison with typically di-
polar interaction energies, accurate estimates of
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the relative importance of exchange and dipolar
coupling in Ni (NO;), - 6H,0 must also await the full
determination of its structure. Further magnetic
and thermal studies of single crystals of this sub-
stance at very low temperatures are being under-
taken.
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Accurate values of both localized and conduction-band quasiparticle excitation energies are

calculated for the extra-orbital model of a dilute metallic alloy.

It is shown that this model

can always be made self-consistent in the sense of satisfying the Friedel sum rule.

I. INTRODUCTION

In recent years, the most intensively studied
model of a metallic alloy has been the so-called
single-site approximation.!>? Here we wish to dis-
cuss a somewhat different model, one particularly
appropriate where the minority constituents of the
alloy are transition elements. We approximate the
effect of each impurity atom by that of an extra
orbital, coupled to the conduction band of the host
metal. As Velicky et al. 2 have pointed out, the

single-site approximation is related to the many-
electron Hubbard model® of a narrow-band solid.

Similarly, the extra-orbital approximation is re-
lated to the many-electron Anderson model® of a

localized magnetic center in a metal.

In this paper we restrict the discussion to a dilute
alloy containing a single type of impurity element.
We use the operator equation-of-motion method®
to find accurate values for both localized and con-
duction-band quasiparticle excitation energies.
Just as Stern® has done recently for the single -site
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model, we shall investigate the self-consistency
of the extra-orbital model by means of the Friedel
sum rule.” In contrast to Stern’s conclusions, we
shall find that the extra-orbital model can always
be made self-consistent.

II. EQUATIONS OF MOTION

The Hamiltonian of our system is

H:E €kc;ck+€02 CICi
R i

+ 20 (Veele,+Voaacher) . (2.1)
" d

The k sum represents the Hamiltonian of the pure
metal; the ¢ sum that of the localized impurities;

the k,i sum that of the coupling between conduction
band and impurities. The one-electron energies

€, (for the conduction band) and ¢, (for the impuri-
ties) are measured relative to the Fermi level. For
convenience, we restrict ourselves to the case where
the conduction-band electrons have a positive effec-
tive mass. The total Hamiltonian represents a sys-
tem of conduction-band electrons hopping in and out
of localized s orbitals on the impurity centers.

Since we have a one-electron problem, the spin in-
dices have been suppressed. Since H is Hermitian,

VE =V . (2.2)
We will later need the fact that
Vei=Vee ERi | (2.3)

where R, is the position of the ith center, and V, is
the matrix element for a center localized at the
origin. The electron creation and destruction opera-
tors obey the usual anticommutation relations

Cos : +:6 'y
[aca‘] aq (2.4)

[cq’cq' ]+: [C:y C:‘L:O .

The set of indices q represents the sum of the in-
dices K plus the indices i.
We look for an operator © such that

[0 ,H]=Fwo . (2.5)

If this equation is exactly satisfied, %Zw is neces-
sarily real. If hiw is positive, © is a quasiparticle
destvuction operator associated with an excited state
of the system containing one quasiparticle of energy
“w. If hw is negative, © is a quasiparticle creation
operator associated with an excited state of the sys-
tem containing one quasiparticle of energy | 7wl .

If Eq. (2.5) is only approximately satisfied, then

7w may be complex. In this case, the signature of
the real part of Zw determines whether 0 is a quasi-
particle creation or destruction operator. In any
case, 7w must be in either the second or the fourth
quadrant of the complex w plane to ensure that the
quasiparticle excitations are causal (i.e., decay
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with increasing time). The lifetime of a quasi-
particle is given by

T=(2lw,)t, (2.86)

where -iw, is the imaginary part of w.
Calculating the commutors of the various c, with
respect to H, we get

[crs H]= €eca+20i Viicy (2.7)
[CbH]=€0Ci+EkV-“Ck . (2.8)

Since every [c,, H] is a linear combination of the
various c¢’s, we can write

0=2.a.c,, (2.9)

where the a, are unknown coefficients. Substituting
(2.9) into (2.5) and taking the anticommutator with
respect to ¢!, we get the set of equations

Do {llewH], ch]. —Hwd g ta,=0 (2.10)
or, specifically,
(€ —Hw)ap+23;V_pia; =0, (2.11)
(6o —Tw)a; +20, Vayay=0 . (2.12)
Eliminating the a, in favor of the q;, we get
(g - W —fiw)a;
=2 Ve e -nw) T T e Ry Rog.  (2.13)
k j#i
where
W= | Ve| dey —iw) 2= (20)73 [ d%| V| e, —Bw0) ™ .
(2.14)

Alternatively, we can eliminate the a; in favor of
the a,, obtaining

Gran= 20 VIV ap et ®-0rRy (2.15)
k'R i
where
Gy = (€ —Hw)(€q — Tiw) —mg | V|2 . (2.16)

Here n, is the number of impurities in the crystal.
Since we are assuming a crystal of unit volume,

ny is also the number density of centers. Since we
are primarily interested in w near the real axis,
we make use of the formal relation

lim (x+in)=¢@ (1)¥in6(x) (2.17)
n-0* x
in evaluating the self-energy W. Writing
w=w; —iw,, (2.18)
W=W, -iW,, (2.19)
we get
Wi=(2m) 30 [d%|V,| X, - iwy) (2. 20)

Wa= —3(2m) "% (sgnw,) | @*k|V,| 26(e, - Hwy)
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=-(2m™! (sgnwl)[kz(%z-k)-l | Vil 2

e}z‘"“’l
(2.21)

III. LOCALIZED QUASIPARTICLES
We look for solutions to Eq. (2.13). In the limit
of small n,, we can always assume that one particu-

lar coefficient, say a;, is much larger than all the
other a;. Thus for a; (j#i), Eq. (2.13) becomes

(eo— W —hiw)a;= 20| V| * (& —hw) e Ry g

(3.1)
Substituting this into (2.13), we get
(g - W -HW)2-1,=0, (3.2)
where we are defining
L=2n) 8 [ [ad®%' |V, |2 Ve |2 (€ - iw)™
X(ep —fiw) 1L e EE»®Rp (3.3

i*i
When n, is sufficiently small, it is a good approxi-
mation to replace the sum over j#1 in (3. 3) by the
equivalent integral, whereupon I; =1 becomes in-
dependent of the index i. It can be shown® that
I=4no(2m)78 [ @ |V, | *(#2R%/2m) ! (€, - Hiw) !,
(3.4)
where m is the effective mass of the conduction
electrons. Note that (%#%2%%/2m) causes no singu-
larity in the integrand at K=0. The real and imag-
inary parts of I can be evaluated in a fashion
equivalent to that used for W in Sec. II. Since we
are assuming a positive effective mass, W and I
lie in the same quadrant of the w plane (the first
or the fourth). We define I'/2 to lie in the same
quadrant as does I. Equation (3. 2) now gives

Fw=hw;=¢-W-1'72 | (3.5)

Here we have chosen that root of (3. 2) which causes
I} 2 to contribute to the imaginary part of Zw with
the same signature as does that of W. Each im-
purity has its energy level lowered and broadened
(as given by — W) by virtue of interaction with the
conduction electrons. In addition, each impurity
has its energy level further lowered and broadened
(as given by —I'/2) by virtue of its effective inter-
action with all the other impurity atoms (through
the intermediary of the conduction band). Note that
this latter lowering and broadening is proportional
to n/?. This is a manifestation of the long-range
nature of the effective interaction.

IV. CONDUCTION-BAND QUASIPARTICLES

We look for solutions to Eq. (2.15). We tenta-
tively assume that one particular coefficient, say
ay, is much larger than all the other ap (kK #Kk).
Unlike the corresponding assumption in Sec. III,
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it is by no means obvious that this assumption is
true here, even in the limit as », vanishes. We
are, in effect, invoking the Born approximation.
For a, (K' #k), Eq. (2.15) becomes

* - (K-F )
Gy ay :V,,.V,,a,,z e iE-F )Ry
i

IR IR
+ E V;V,{vakuzeik’ v) i,

P N j
(4.1)
We assume

- * Ry
Apee = lel; Vkll Vkakzpe HE-E") ﬁP .

Substituting (4. 2) into (4.1), we get

ap =G VEV,a, (; oGO R,

(4.2)

+ 2

R #R R

Ve |23 T o R
Ed

x e"i“'(ﬁf'ﬁb)) . (4.3

In turn, substituting (4. 3) into (2.15), we get
Gy= l Vk\ 22 IVk' | ZG;:'1 2 e'“i";"(ﬁi'ﬁj’
R’ #2 i,i

+‘Vk‘22 2

B #R k'R, R

| Vi |2 Vier |26t Gt

X 2 Pl E (Ey-Ry ik (R iR (Ry-Rp
i,d,9

(4.4)

Equation (4. 4) represents the second Born approx-
imation. Because of destructive interference, the
double sum over i and j reduces to a single sum

(i =j); the triple sum over ¢,j, and p reduces to a
double sum (;=p). We approximate the quantities
G and G by dropping the terms proportional to
ng. Making use of the definitions of W and I, we
thus get

Gh=nol Vk| 2(60 —h—w)_l w
+ng| V| e —Hiw)"2(W2+1) . (4.5)
Note that the terms involving W are linear in ny,
whereas that involving I is quadratic in ny. Thus,
in the dilute limit we drop the latter term, getting
Gr=mo| Va| 2(€g =) P W1+ (€ —Hiw) W] .
(4.6)
It can be seen that if we perform the iteration
process for a, an indefinite number of times

(rather than twice as done above), then in the low-
concentration limit, Eq. (4.6) is replaced by

Gr=no | Va| 22 [(€g - ) W] .

n=1

(4.7)

Keeping only the first » terms in this series rep-
resents the nth Born approximation. Fortunately,
we can sum this Born series by inspection, getting
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Gy=no|Vy| 2W(eq - W —fiw) ™! (4.8)
or
fw= €, —ng| Vy|2(€q - W - Hw) ™t . (4.9)

Solving this quadratic equation,
fw=Flw,=3(€,+ €y — W)

+3 [(€, —€0+W)2+4no\ Ve 22

_ 2 (Ek—€0+wl)+iwz)
_€k+no|V,,| ((Ek—€0+W1)2+W§ (4.10)
In terms of the angle

oy =arctan [Wy(e, — €, + W) ], (4.11)

we have
Twy = € +10| V|2 [(€4 — €0+ Wy)2+ W2 ] 201%
(4.12)

The cross section for scattering of a quasipar-
ticle of wave vector k by an impurity is

(4.13)

where 7, is given by Eq. (2.6). We may approxi-
mate the quasiparticle velocity v, by its value in the
dilute limit, namely,

de
Combining Eqgs. (2.6), (2.21), and (4.11)-(4.14),
we get

0p= oy T,

(4.14)

0= (47 /k?) sin?,, . (4.15)
But, in general, we have
477 bt s 2
0p= =3 2 (21 +1)sin%,, , (4.16)
k1o

where §;, is the phase shift of the Ith partial wave
associated with the quasiparticle of wave vector
k. Thus,

sin%6,= 25 (21 +1)sin%,, .
1=0

It has been shown by Anderson and McMillan®

(4.17)
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that the Friedel sum rule’

32 (21+1) 6,
T 1=0

Z= (4.18)
applies to the extra-orbital model of an impurity.
Here 9, is §;, evaluated on the Fermi surface, and
Z is the excess number of conduction electrons
introduced into the system by each impurity. If
we make the approximation that only s-wave scat-
tering is important (i.e., 6,,=0 for [>0), then Eq.
(4.18) can be written

Z=(2/m)arctan[Wyy/(Wyo - €0)7'] . (4.19)
Here we are using the notation
Wo= Wiy —iWay (4.20)

for W evaluated at Zw=0. Equation (4.19) expres-
ses the condition for self-consistency in the choice
of €, and V, in order that the excess charge Ze
associated with an impurity be properly screened
out by the surrounding conduction electrons.
Equation (4.19) bears a close resemblance to the
corresponding condition for the single -site model
of an alloy.

For Z even, Eq. (4.19) implies

Wy = | Vkp‘:o . (4.21)
For Z odd, (4.19) implies
€=Wy=(2n) %0 [d% | V,|2 €, (4.22)

which in turn implies that €, >0 (since the conduc-
tion-band effective mass is positive). In contrast
to the single-site model, there are nontrivial self-
consistent choices of €, and V, for all values of
Z.' The fact that Z and Z + 2 have identical choices
can be understood by the following argument. !2

In going from Z to Z + 2, the s-wave phase shift

8y will increase by 7. But whenever §, crosses an
integral multiple of 7, a bound s level drops out of
the bottom of the conduction band. This level is
occupied by two opposite-spin electrons which
serve to exactly screen out the increase in Z from
the environment of the impurity. '3
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In fairness to the single-site model, it should be
mentioned that the model’s lack of a self-consistent
choice of parameters for even Z appears to be an artifact
of the assumption of only nearest=neighbor coupling be-
tween sites. If one assumes both nearest- and next-near-
est-neighbor couplings, it appears that there should be
self-consistent choices for even Z, although such choices
might be difficult to determine.

2This argument is equally applicable to both the extra-
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orbital and the single-site models of a dilute alloy.
BFor a discussion of this point, see W. A. Harrison,
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Solid State Theory (McGraw-Hill, New York, 1970),
p. 185.
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The graphical spin-wave approach to two-magnon Raman scattering which was developed in
an earlier paper is applied to a study of the two-dimensional Heisenberg antiferromagnet K,NiF,.
In the present treatment the one-magnon energies are taken to be renormalized in the Hartree-
Fock approximation, with the two-magnon Green’s function evaluated in the “ladder” approxi-
mation. It is found that the Hartree-Fock renormalization gives very good agreement with the
experimental results for the temperature shift of the Raman peak up to the measured Néel
temperature Ty =97.1°K, and yields satisfactory agreement above Ty up to the maximum tem-

peratures for which Raman data are available.
explanation for the observed thermal broadening of the spectra remains to be given.

As in the three-dimensional case, a satisfactory

Compari-

sons between the results for K,NiF, and its three-dimensional analog KNiF; are made. In
particular it is found that the renormalization of the zone-edge magnons for T =T is much less

marked in the two-dimensional case.

As has been discussed by other authors, this indicates a

rather different temperature dependence of the “coherence length” for the two-dimensional sys-

tem.

I. INTRODUCTION

In an earlier paper' (hereafter referred to as I),
we presented a spin-wave approach to two-magnon
Raman scattering and applied it to a study of sim-
ple three-dimensional antiferromagnetic systems
(e.g., KNiF;). The theory was based on the Dyson-
Maleev boson representation of the spin operators,
and proceeded through the application of the finite-
temperature graphical perturbation theory. In
this paper we present results of calculations based
on the theory developed in I, but applied to the in-
teresting case of a simple two-dimensional anti-
ferromagnet. Probably the most widely studied
example of such a system is the compound K,NiF,,
which we shall consider in particular in this paper.
At various points throughout the paper, we shall,
for convenience, use the abbreviations [2] or [3]
to stand for two- or three-dimensional systems.

Perhaps the most interesting theoretical ques-
tion associated with the [2] systems involves the
question of long-range ordering. Mermin and
Wagner? have applied the Bogoliubov inequality to
provide a rigorous proof that there can be no long-
range order in a [2] system described by the Heisen-
berg exchange Hamiltonian for 7 >0 in the absence
of anisotropy. This instability is also suggested
from simple spin-wave theory using a standard
argument which we recall briefly here. Consider
an isotropic [2] ferromagnet with a spin-wave
branch having energy Q;oc K*fork—0. Calculation
of the magnetization involves an integral of the form

1
fkdk—7—egi T

which diverges logarithmically in the neighborhood
of k~0. Next consider the case of an isotropic

[2] antiferromagnet with a spin-wave branch having
Q;xk as k- 0. Here calculation of the sublattice
magnetization involves an integral

kdk 1
S?k eii;kBi -1

where the extra factor of , in the denominator
arises from the Bogoliubov transformation which
diagonalizes the spin-wave Hamiltonian. Again one
obtains a logarithmic divergence from the region
k~0. These considerations show that the question
of long-range order in [2] depends sensitively on
the behavior of the long-wavelength magnons. Also,
since a small amount of anisotropy is sufficient

to remove the singularity at k-0, the ordering
problem (at least in the simple spin-wave ap-
proximation®) involves a careful treatment of anisot-
ropy effects.

In contrast to the discussion above, we now con-
sider the problem of two-magnon Raman scattering
in a [2] antiferromagnet. Here the cross section is
determined almost exclusively by the behavior of
the short-wavelength (zone-edge) magnons, which
should be very insensitive to small effects due to
anisotropy. Also one expects the zone-edge mag-
nons to reflect the properties of short-range order
in the system, and this can persist well above the



